Dissemin is shutting down on January 1st, 2025

Published in

Wiley Open Access, Advanced Science, 8(9), 2022

DOI: 10.1002/advs.202105219

Links

Tools

Export citation

Search in Google Scholar

Rehabilitation of Total Knee Arthroplasty by Integrating Conjoint Isometric Myodynamia and Real‐Time Rotation Sensing System

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAs the world population structure has already exhibited an inevitable trend of aging, technical advances that can provide better eldercare are highly desired. Knee osteoarthritis, one of the most common age‐associated diseases, can be effectively treated via total knee arthroplasty (TKA). However, patients are suffering from the recovery process due to inconvenience in post‐hospital treatment. Here, a portable, modular, and wearable brace for self‐assessment of TKA patients’ rehabilitation is reported. This system mainly consists of a force transducer for isometric muscle strength measurement and an active angle sensor for knee bending detection. Clinical experiments on TKA patients demonstrate the feasibility and significance of the system. Specifically, via brace‐based personalized healthcare, the TKA patients’ rehabilitation process is quantified in terms of myodynamia, and a definite rehabilitation enhancement is obtained. Additionally, new indicators, that is, isometric muscle test score, for evaluating TKA rehabilitation are proposed. It is anticipated that, as the cloud database is employed and more rehabilitation data are collected in the near future, the brace system can not only facilitate rehabilitations of TKA patients, but also improve life quality for geriatric patients and open a new space for remote artificial intelligence medical engineering.