Published in

Oxford University Press, Briefings in Bioinformatics, 5(23), 2022

DOI: 10.1093/bib/bbac327

Links

Tools

Export citation

Search in Google Scholar

Scalable batch-correction approach for integrating large-scale single-cell transcriptomes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractIntegration of accumulative large-scale single-cell transcriptomes requires scalable batch-correction approaches. Here we propose Fugue, a simple and efficient batch-correction method that is scalable for integrating super large-scale single-cell transcriptomes from diverse sources. The core idea of the method is to encode batch information as trainable parameters and add it to single-cell expression profile; subsequently, a contrastive learning approach is used to learn feature representation of the additive expression profile. We demonstrate the scalability of Fugue by integrating all single cells obtained from the Human Cell Atlas. We benchmark Fugue against current state-of-the-art methods and show that Fugue consistently achieves improved performance in terms of data alignment and clustering preservation. Our study will facilitate the integration of single-cell transcriptomes at increasingly large scale.