Links

Tools

Export citation

Search in Google Scholar

Gd-based single-ion magnets with tunable magnetic anisotropy: Molecular design of spin qubits

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We report ac susceptibility and continuous wave and pulsed EPR experiments performed on GdW10 and GdW30 polyoxometalate clusters, in which a Gd3+ ion is coordinated to different polyoxometalate moieties. Despite the isotropic character of gadolinium as a free ion, these molecules show slow magnetic relaxation at very low temperatures, characteristic of single molecule magnets. For T≲200 mK, the spin-lattice relaxation becomes dominated by pure quantum tunneling events, with rates that agree quantitatively with those predicted by the Prokof’ev and Stamp model [ Phys. Rev. Lett. 80 5794 (1998)]. The sign of the magnetic anisotropy, the energy level splittings, and the tunneling rates strongly depend on the molecular structure. We argue that GdW30 molecules are also promising spin qubits with a coherence figure of merit QM≳50.