Published in

Oxford University Press, Schizophrenia Bulletin: The Journal of Psychoses and Related Disorders, 1(50), p. 145-156, 2023

DOI: 10.1093/schbul/sbad113

Links

Tools

Export citation

Search in Google Scholar

Effects of Exercise on Structural and Functional Brain Patterns in Schizophrenia—Data From a Multicenter Randomized-Controlled Study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background and Hypothesis Aerobic exercise interventions in people with schizophrenia have been demonstrated to improve clinical outcomes, but findings regarding the underlying neural mechanisms are limited and mainly focus on the hippocampal formation. Therefore, we conducted a global exploratory analysis of structural and functional neural adaptations after exercise and explored their clinical implications. Study Design In this randomized controlled trial, structural and functional MRI data were available for 91 patients with schizophrenia who performed either aerobic exercise on a bicycle ergometer or underwent a flexibility, strengthening, and balance training as control group. We analyzed clinical and neuroimaging data before and after 6 months of regular exercise. Bayesian linear mixed models and Bayesian logistic regressions were calculated to evaluate effects of exercise on multiple neural outcomes and their potential clinical relevance. Study Results Our results indicated that aerobic exercise in people with schizophrenia led to structural and functional adaptations mainly within the default-mode network, the cortico-striato-pallido-thalamo-cortical loop, and the cerebello-thalamo-cortical pathway. We further observed that volume increases in the right posterior cingulate gyrus as a central node of the default-mode network were linked to improvements in disorder severity. Conclusions These exploratory findings suggest a positive impact of aerobic exercise on 3 cerebral networks that are involved in the pathophysiology of schizophrenia. Clinical Trials Registration The underlying study of this manuscript was registered in the International Clinical Trials Database, ClinicalTrials.gov (NCT number: NCT03466112, https://clinicaltrials.gov/ct2/show/NCT03466112?term=NCT03466112&draw=2&rank=1) and in the German Clinical Trials Register (DRKS-ID: DRKS00009804).