Published in

Wiley, Advanced Materials, 39(34), 2022

DOI: 10.1002/adma.202203474

Links

Tools

Export citation

Search in Google Scholar

Visible‐Light‐Degradable 3D Microstructures in Aqueous Environments

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe additive manufacturing technique direct laser writing (DLW), also known as two‐photon laser lithography, is becoming increasingly established as a technique capable of fabricating functional 3D microstructures. Recently, there has been an increasing effort to impart microstructures fabricated using DLW with advanced functionalities by introducing responsive chemical entities into the underpinning photoresists. Herein, a novel photoresist based on the photochemistry of the bimane group is introduced that can be degraded upon exposure to very mild conditions, requiring only water and visible light (λmax = 415–435 nm) irradiation. The degradation of the microstructures is tracked and quantified using AFM measurements of their height. The influence of the writing parameters as well as the degradation conditions is investigated, unambiguously evidencing effective visible light degradation in aqueous environments. Finally, the utility of the photodegradable resist system is demonstrated by incorporating it into multimaterial 3D microstructures, serving as a model for future applications.