Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Medicina, 3(57), p. 195, 2021

DOI: 10.3390/medicina57030195

Links

Tools

Export citation

Search in Google Scholar

Association between Gut Microbial Diversity and Carotid Intima-Media Thickness

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background and Objectives: There is an increasing focus on the effect of the gut microbiome on developing atherosclerosis, but there is still no unified standpoint. We aimed to find associations between intestinal microbiome diversity and a marker of subclinical atherosclerosis, the carotid intima-media thickness (IMT). Materials and Methods: Recruited from the Hungarian Twin Registry, 108 monozygotic (MZ) twins (mean age 52.4 ± 14.1 years, 58% female) underwent a comprehensive carotid ultrasound examination (Samsung RS85). Of the 108 MZ twins, 14 pairs (mean age 65 ± 6.4 years, 71% female) discordant for carotid IMT were selected to undergo a stool sample collection. A special stool sampling container was mailed and received from each participant. After DNA extraction, library construction was performed specifically for the V3–V4 hypervariable region of microbial 16S rRNA. Next, the microbiome composition of the samples was determined using Kraken software. Two hypotheses were tested with the exact permutation test: (1) in the group with normal IMT, the Shannon index of the phyla is higher; and (2) the Firmicutes/Bacteroidetes ratio is greater in the group with high IMT values. Furthermore, the abundance of different bacterial strains present at higher and normal IMT was also explored. Statistical analysis was carried out using R software. Results: Increased Firmicutes/Bacteroidetes ratio was associated with increased IMT (mean Firmicutes/Bacteroidetes ratio of IMT > 0.9 and IMT < 0.9 groups: 2.299 and 1.436, respectively; p = 0.031). In the group with normal IMT values, a substantially higher fraction of Prevotellaceae was observed in contrast with subjects having subclinical atherosclerosis. However, there was no significant difference in the alpha diversity between the two groups. Conclusions: The determining role of individual genera and their proportions in the development and progression of atherosclerosis can be assumed. Further studies are needed to clarify if these findings can be used as potential therapeutic targets.