Dissemin is shutting down on January 1st, 2025

Published in

BMJ Publishing Group, Journal of NeuroInterventional Surgery, 2(15), p. 178-182, 2022

DOI: 10.1136/neurintsurg-2022-018941

Links

Tools

Export citation

Search in Google Scholar

Bioresorbable flow diverters for the treatment of intracranial aneurysms: review of current literature and future directions

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The use of flow diverters is a rapidly growing endovascular approach for the treatment of intracranial aneurysms. All FDA-approved flow diverters are composed of nitinol or cobalt-chromium, which will remain in the patient for the duration of their life. Bioresorbable flow diverters have been proposed by several independent investigators as the next generation of flow diverting devices. These devices aim to serve their transient function of occluding and healing the aneurysm prior to being safely resorbed by the body, eliminating complications associated with the permanent presence of conventional flow diverters. Theoretical advantages of bioresorbable flow diverters include (1) reduction in device-induced thrombosis; (2) reduction in chronic inflammation and device-induced stenosis; (3) reduction in side branch occlusion; (4) restoration of physiological vasomotor function; (5) reduction in imaging artifacts; and (6) use in pediatric applications. Advances made in the similar bioresorbable coronary stenting field highlight some of these advantages and demonstrate the feasibility and safety of bioresorbable endovascular devices in the clinic. The current work aims to review the progress of bioresorbable flow diverters, identify opportunities for further investigation, and ultimately stimulate the advancement of this technology.