Dissemin is shutting down on January 1st, 2025

Published in

Optica, Photonics Research, 12(10), p. 2846, 2022

DOI: 10.1364/prj.472932

Links

Tools

Export citation

Search in Google Scholar

Large-scale photonic natural language processing

Journal article published in 2022 by Carlo M. Valensise ORCID, Ivana Grecco, Davide Pierangeli, Claudio Conti ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Modern machine-learning applications require huge artificial networks demanding computational power and memory. Light-based platforms promise ultrafast and energy-efficient hardware, which may help realize next-generation data processing devices. However, current photonic networks are limited by the number of input-output nodes that can be processed in a single shot. This restricted network capacity prevents their application to relevant large-scale problems such as natural language processing. Here, we realize a photonic processor for supervised learning with a capacity exceeding 1.5 × 10 10 optical nodes, more than one order of magnitude larger than any previous implementation, which enables photonic large-scale text encoding and classification. By exploiting the full three-dimensional structure of the optical field propagating in free space, we overcome the interpolation threshold and reach the over-parameterized region of machine learning, a condition that allows high-performance sentiment analysis with a minimal fraction of training points. Our results provide a novel solution to scale up light-driven computing and open the route to photonic natural language processing.