Dissemin is shutting down on January 1st, 2025

Published in

Journal of Disaster Research, 7(16), p. 1030-1044, 2021

DOI: 10.20965/jdr.2021.p1030

Links

Tools

Export citation

Search in Google Scholar

Inter-model comparison for tsunami debris simulation

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Assessing the risk of tsunami-driven debris has increasingly been recognized as an important design consideration. The recent ASCE/SEI7-16 standard Chapter 6 requires all the areas included within a 22.5° spreading angle from the debris source to consider the debris impact. However, it would be more reasonable to estimate the risks using numerical simulation models. Although a number of simulation models to predict tsunami debris transport have been proposed individually, comparative studies for these simulation models have rarely been conducted. Thus, in the present study, an inter-model comparison for tsunami debris simulation model was performed as a part of the virtual Tsunami Hackathon held in Japan from September 1 to 3 in 2020. The blind benchmarking experiment, which recorded the transport of three container models under a tsunami-like bore, was conducted to generate a unique dataset. Then, four different numerical models were applied to reproduce the experiments. Simulated results demonstrated considerable differences among the simulation models. Essentially, the importance of accurate modelling of a flow field, especially a tsunami front, was confirmed to be important in simulating debris motion. Parametric studies performed in each model and comparisons between different models also confirmed that a drag coefficient and inertia coefficient would influence the simulated debris trajectory and velocity. It was also shown that two-way coupled modelling to express the interaction between debris and a tsunami is important to accurately model the debris motion.