Published in

MDPI, International Journal of Molecular Sciences, 17(23), p. 9849, 2022

DOI: 10.3390/ijms23179849

Links

Tools

Export citation

Search in Google Scholar

Atropine Is a Suppressor of Epithelial–Mesenchymal Transition (EMT) That Reduces Stemness in Drug-Resistant Breast Cancer Cells

Journal article published in 2022 by Emad A. Ahmed ORCID, Mayyadah A. Alkuwayti, Hairul-Islam M. Ibrahim ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Atropine (ATR) is extracted from a belladonna plant that belongs to a class of anticholinergic drugs and is therefore involved in the treatment of the overdose of cholinergic drugs or mushroom poisoning. It is a well-known blocker of muscarinic acetylcholine receptors (mAChRs) that are expressed in various tumor cells, including breast tumors from animal and human origin, but it has yet to be recommended as an anticancer drug. Our in silico docking analysis indicates that atropine has a roust virtual binding, with a stable binding energy, to two major signaling molecules involved in EMT regulation: E-cad and ZEB-2. For both, the gene and the protein expression level results show that atropine is an effective molecule in reducing epithelial–mesenchymal transition (EMT) and colony formation induced by TGF-B or carboplatin in both the mesenchymal-like cell line MDA-MB-231 and the epithelial-like cell line T47D. We conclude that atropine as a potential suppressor of EMT could be co-administrated with other chemotherapeutic drugs to reduce stemness in drug-resistant breast tumor cells.