Published in

MDPI, Applied Sciences, 2(12), p. 563, 2022

DOI: 10.3390/app12020563

Links

Tools

Export citation

Search in Google Scholar

Single Evaluation of Use of a Mixed Reality Headset for Intra-Procedural Image-Guidance during a Mock Laparoscopic Myomectomy on an Ex-Vivo Fibroid Model

Journal article published in 2022 by Matin Torabinia ORCID, Alexandre Caprio, Tamatha B. Fenster, Bobak Mosadegh ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Uterine fibroids represent the highest prevalence of benign tumors in women, with reports ranging from 4.5% to 68.6%, with a significant bias towards African American women. For uterine fibroids, a significant decision is determining whether fibroids can be successfully removed using minimally invasive (MI) techniques or their removal requires open surgery. Currently, the standard-of-care for intra-procedural visualization for myomectomies is ultrasound, which has low image quality and requires a specially trained assistant. Currently, the state-of-the-art is to obtain a pre-procedural MRI scan of the patient, which can be used for diagnosis and pre-procedural planning. Although proven incredibly useful pre-procedurally, MRI scans are not often used intra-procedurally due to the inconvenient visualization as 2D slices, which are seen on 2D monitors that do not intuitively convey the depth or orientation of the fibroids, as needed to effectively perform myomectomies. To address this limitation, herein, we present the use of a mixed reality headset (i.e., Microsoft HoloLens 2), as a tool for intra-procedural image-guidance during a mock myomectomy of an ex vivo animal uterus. In this work, we created a patient-specific holographic rendering by performing image segmentation of an MRI scan of a custom-made uterine fibroid animal model. A physician qualitatively assessed the usefulness of the renderings for fibroid localization, as compared to the same visualization on a 2D monitor. In conclusion, the use of mixed reality as an intra-procedural image guidance tool for myomectomies was perceived as a better visualization technique that could lead to improvements in MI approaches and make them accessible to patients from lower socioeconomic populations.