Published in

BMJ Publishing Group, Heart, 23(109), p. 1734-1740, 2023

DOI: 10.1136/heartjnl-2022-321499

Links

Tools

Export citation

Search in Google Scholar

Update on advanced interventional neuromodulatory approaches to lower blood pressure

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Herein, we review interventional peripheral neuromodulatory approaches to reduce blood pressure (BP), specifically focusing on catheter-based renal denervation (RDN), as well as the latest data from recent clinical trials underpinning its clinical use. Given the apparent failure of established lifestyle measures and pharmacologic BP-lowering approaches to improve hypertension (HTN) control rates, the past decade has seen remarkable scientific efforts to explore the utility of interventional strategies for BP management. Experimental studies and human clinical trials have demonstrated the crucial role of the sympathetic nervous system in the development and mainenance of HTN - consequently, most recent interventional technologies aimed primarily at modulating neural pathways. Advanced approaches that were rigorously tested in human studies include RDN, endovascular baroreflex amplification, baroreflex activation therapy and cardiac neuromodulation stimulation.Amongst these, RDN is by far the most established technology. With recent robust evidence from clinical trials and real-world data showing the safety and efficacy of both ultrasound and radiofrequency-based approaches, a recent clinical consensus statement of the European Society of Cardiology Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions concludes that RDN represents an ancillary therapeutic option in patients with uncontrolled resistant HTN confirmed by ambulatory blood pressure measurement and in spite of attention to lifestyle changes and optimised pharmacological treatment. Furthermore, RDN could alos be considered for patienst unlikley to adhere to or tolerate long-term antihypertensive drug treatment. Very recent data indicate long-term safety and efficacy up to 10 years. Appropriate implementation of RDN into clinical practice is now warranted.For all other interventions additional data from adequately designed human studies are required to establish their safety and clinical utility for potential future use in routine practice.