Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 4(16), p. e0249771, 2021

DOI: 10.1371/journal.pone.0249771

Links

Tools

Export citation

Search in Google Scholar

OptiMissP: A dashboard to assess missingness in proteomic data-independent acquisition mass spectrometry

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background Missing values are a key issue in the statistical analysis of proteomic data. Defining the strategy to address missing values is a complex task in each study, potentially affecting the quality of statistical analyses. Results We have developed OptiMissP, a dashboard to visually and qualitatively evaluate missingness and guide decision making in the handling of missing values in proteomics studies that use data-independent acquisition mass spectrometry. It provides a set of visual tools to retrieve information about missingness through protein densities and topology-based approaches, and facilitates exploration of different imputation methods and missingness thresholds. Conclusions OptiMissP provides support for researchers’ and clinicians’ qualitative assessment of missingness in proteomic datasets in order to define study-specific strategies for the handling of missing values. OptiMissP considers biases in protein distributions related to the choice of imputation method and helps analysts to balance the information loss caused by low missingness thresholds and the noise introduced by selecting high missingness thresholds. This is complemented by topological data analysis which provides additional insight to the structure of the data and their missingness. We use an example in Chronic Kidney Disease to illustrate the main functionalities of OptiMissP.