Published in

Wiley, Laser and Photonics Reviews, 11(17), 2023

DOI: 10.1002/lpor.202300124

Links

Tools

Export citation

Search in Google Scholar

Time‐Multiplexed Control of Programmable Silicon Photonic Circuits Enabled by Monolithic CMOS Electronics

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractProgrammable photonic circuits require an electronic control layer to configure and stabilize the optical functionality at run‐time. Such control action is normally implemented by supervising the status of the circuit with integrated light monitors and by providing feedback signals to integrated actuators. This paper demonstrates that the control action can be effectively performed with electrical signals that are time‐multiplexed directly on the photonic chip. To this aim, the necessary electronic functionalities are monolithically integrated in a conventional 220 nm silicon photonics platform with no changes to the standard fabrication process. By exploiting a non‐conventional structure to implement metal‐oxide–semiconductor field‐effect transistors, an electronic controller is co‐designed into a programmable photonic circuit to enable a time‐multiplexed readout of integrated photodetectors and sequential activation of thermal phase shifters with on‐chip electronic memory. The accuracy of the time‐multiplexed control, achieved on a time scale of less than 10 ms, is demonstrated by penalty‐free routing of 10 Gbit s−1 modulated signals. This approach can be straightforwardly applied to large‐scale photonic chips to reduce the number of required electrical input/output connections.