Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Electronics, 2024

DOI: 10.1038/s41928-024-01121-3

Links

Tools

Export citation

Search in Google Scholar

Ready-to-transfer two-dimensional materials using tunable adhesive force tapes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractGraphene and other two-dimensional (2D) materials can be used to create electronic and optoelectronic devices. However, their development has been limited by the lack of effective large-area transfer processes. Here we report a transfer method that uses functional tapes with adhesive forces controlled by ultraviolet light. The adhesion of the tape is optimized for the transfer of monolayer graphene, providing a yield of over 99%. Once detached from the growth substrate, the graphene/tape stack enables easy transfer of graphene to the desired target substrate. The method can be used to transfer other 2D materials, including bilayer graphene, transition metal dichalcogenides, hexagonal boron nitride and stacked heterostructures. The solvent-free nature of the final release step facilitates transfer to various target substrates including flexible polymers, paper and three-dimensional surfaces. The tape/2D material stacks can also be cut into desired sizes and shapes, allowing site-selective device fabrication with reduced loss of 2D materials.