Published in

Nature Research, Nature Communications, 1(14), 2023

DOI: 10.1038/s41467-023-40516-2

Links

Tools

Export citation

Search in Google Scholar

Molecular basis of Mg2+ permeation through the human mitochondrial Mrs2 channel

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMitochondrial RNA splicing 2 (Mrs2), a eukaryotic CorA ortholog, enables Mg2+ to permeate the inner mitochondrial membrane and plays an important role in mitochondrial metabolic function. However, the mechanism by which Mrs2 permeates Mg2+ remains unclear. Here, we report four cryo-electron microscopy (cryo-EM) reconstructions of Homo sapiens Mrs2 (hMrs2) under various conditions. All of these hMrs2 structures form symmetrical pentamers with very similar pentamer and protomer conformations. A special structural feature of Cl-bound R-ring, which consists of five Arg332 residues, was found in the hMrs2 structure. Molecular dynamics simulations and mitochondrial Mg2+ uptake assays show that the R-ring may function as a charge repulsion barrier, and Cl may function as a ferry to jointly gate Mg2+ permeation in hMrs2. In addition, the membrane potential is likely to be the driving force for Mg2+ permeation. Our results provide insights into the channel assembly and Mg2+ permeation of hMrs2.