Published in

Wiley, Advanced Functional Materials, 2024

DOI: 10.1002/adfm.202313384

Links

Tools

Export citation

Search in Google Scholar

Nanoengineering Calcium Peroxide‐Based Site‐Specific Delivery Platform to Efficiently Activate the cGAS‐STING Pathway for Cancer Immunotherapy by Amplified Endoplasmic Reticulum Stress

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Currently, the understanding of the cyclic GMP‐AMP synthase (cGAS)‐stimulator of interferon genes (STING) pathway's involvement in efficient immunotherapy mainly revolves around the role of mitochondria or nucleus modulation. Nonetheless, the role of endoplasmic reticulum (ER) stress in activating the cGAS‐STING mechanism to boost immunity against tumors remains essentially unexplored. Herein, novel findings demonstrating that ER stress can be used as a strategy for stimulating the cGAS‐STING pathway, thereby augmenting the immune response against cancer, are presented. To accomplish this objective, ER‐targeting p‐methylbenzene sulfonamide‐tailored IR780 (p‐780) is synthesized and it is loaded into CaO2 nanoparticles, which are further functionalized with distearoyl phosphoethanolamine‐polyethylene glycol(DSPE‐PEG)‐biotin to form PEG/CaO2@p‐780 NPs. The disruption of calcium homeostasis, coupled with the heightened levels of reactive oxygen species (ROS) mediated by p‐780, along with hyperpyrexia, collectively contributes to the amplification of endoplasmic reticulum (ER) stress. This cascade of events effectively triggers the cGAS‐STING pathway and, in parallel, facilitates the degradation of the programmed cell death 1 ligand 1 (PD‐L1) protein. In addition, oxygen released through CaO2 decomposition is expected to promote p‐780–mediated phototherapy, while reversing the immunosuppressive tumor microenvironment associated with hypoxia. Furthermore, DSPE‐PEG‐biotin facilitates tumor site‐specific drug delivery through active targeting mediated by the biotin receptor. Collectively, PEG/CaO2@p‐780 nanoparticles successfully activate systemic antitumor immunity by enhancing ER stress.