Published in

MDPI, Remote Sensing, 5(15), p. 1346, 2023

DOI: 10.3390/rs15051346

Links

Tools

Export citation

Search in Google Scholar

Efficient Underground Target Detection of Urban Roads in Ground-Penetrating Radar Images Based on Neural Networks

Journal article published in 2023 by Wei Xue ORCID, Kehui Chen, Ting Li, Li Liu ORCID, Jian Zhang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Ground-penetrating radar (GPR) is an important nondestructive testing (NDT) tool for the underground exploration of urban roads. However, due to the large amount of GPR data, traditional manual interpretation is time-consuming and laborious. To address this problem, an efficient underground target detection method for urban roads based on neural networks is proposed in this paper. First, robust principal component analysis (RPCA) is used to suppress the clutter in the B-scan image. Then, three time-domain statistics of each A-scan signal are calculated as its features, and one backpropagation (BP) neural network is adopted to recognize A-scan signals to obtain the horizontal regions of targets. Next, the fusion and deletion (FAD) algorithm is used to further optimize the horizontal regions of targets. Finally, three time-domain statistics of each segmented A-scan signal in the horizontal regions of targets are extracted as the features, and another BP neural network is employed to recognize the segmented A-scan signals to obtain the vertical regions of targets. The proposed method is verified with both simulation and real GPR data. The experimental results show that the proposed method can effectively locate the horizontal ranges and vertical depths of underground targets for urban roads and has higher recognition accuracy and less processing time than the traditional segmentation recognition methods.