Published in

Oxford University Press, Radiation Protection Dosimetry, 1(200), p. 84-90, 2023

DOI: 10.1093/rpd/ncad270

Links

Tools

Export citation

Search in Google Scholar

An organ-effective modulation for non-contrast chest computed tomography imaging: effect on image quality and thyroid exposure reduction

Journal article published in 2023 by Qianling Li, Zicheng Zhao, Chen Yang, Fandong Zhu, Chenweng Sun, Zhenhua Zhao
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract We investigate the efficacy of organ-effective modulation (OEM) technique for thyroid dose reduction among various body habitus and its impact on image quality in chest non-contrast computed tomography (CT). We prospectively enrolled 64 patients who underwent non-contrast chest CT from January to May 2022. The skin-absorbed radiation dose over the thyroid (Dthyroid) was obtained using a thermoluminescence dosemeter. Signal-to-noise ratio and image noise was also quantitatively assessed. In subjective analyses, two radiologists independently evaluated images based on a 5-point scale. The OEM group showed a markedly decrease in Dthyroid when compared with the non-OEM group (p < 0.05). No significant difference was observed regarding the image noise (p < 0.05), except for the ventral air space. The subjective scores of two radiologists showed no significant differences between the non-OEM and OEM groups. OEM can effectively reduce the radiation exposure of thyroid without compromising on image quality in non-contrast chest CT.