Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Computational Science, 12(3), p. 1067-1080, 2023

DOI: 10.1038/s43588-023-00568-2

Links

Tools

Export citation

Search in Google Scholar

Spatial redundancy transformer for self-supervised fluorescence image denoising

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractFluorescence imaging with high signal-to-noise ratios has become the foundation of accurate visualization and analysis of biological phenomena. However, the inevitable noise poses a formidable challenge to imaging sensitivity. Here we provide the spatial redundancy denoising transformer (SRDTrans) to remove noise from fluorescence images in a self-supervised manner. First, a sampling strategy based on spatial redundancy is proposed to extract adjacent orthogonal training pairs, which eliminates the dependence on high imaging speed. Second, we designed a lightweight spatiotemporal transformer architecture to capture long-range dependencies and high-resolution features at low computational cost. SRDTrans can restore high-frequency information without producing oversmoothed structures and distorted fluorescence traces. Finally, we demonstrate the state-of-the-art denoising performance of SRDTrans on single-molecule localization microscopy and two-photon volumetric calcium imaging. SRDTrans does not contain any assumptions about the imaging process and the sample, thus can be easily extended to various imaging modalities and biological applications.