Published in

Trans Tech Publications, Materials Science Forum, (702-703), p. 834-837, 2011

DOI: 10.4028/www.scientific.net/msf.702-703.834

Links

Tools

Export citation

Search in Google Scholar

Influence of Temperature upon the Texture Evolution and Mechanical Behaviour of Zircaloy-4

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The mechanical behaviour and texture evolution during uniaxial compression of Zircaloy-4 at different temperatures (25, 300, 500 C) has been studied. At room temperature and 300 C the texture evolution and strain-hardening behaviour observed are attributed to the activation of {10-12} tensile twinning, which can be identified in optical micrographs and electron backscatter diffraction (EBSD) data. The influence of twinning upon the texture evolution and hardening rate becomes less apparent with increasing temperature. Nevertheless twinning is still active at 500 C. Simulation of the texture evolution at 500 C using crystal plasticity finite element modelling (CPFEM) indicates that slip alone cannot explain the experimentally observed textures at this temperature.