Published in

MDPI, Polymers, 22(15), p. 4430, 2023

DOI: 10.3390/polym15224430

Links

Tools

Export citation

Search in Google Scholar

A Novel Fused SiO2 and h-BN Modified Quartz Fiber/Benzoxazine Resin Ceramizable Composite with Excellent Flexural Strength and Ablation Resistance

Journal article published in 2023 by Zongyi Deng, Yunfei Lv, Minxian Shi, Zhixiong Huang, Wenchao Huang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Hypersonic vehicles encounter hostile service environments of thermal/mechanical/chemical coupling, so thermal protection materials are crucial and essential. Ceramizable composites have recently attracted intensive interest due to their ability to provide large-area thermal protection for hypersonic vehicles. In this work, a novel ceramizable composite of quartz fiber/benzoxazine resin modified with fused SiO2 and h-BN was fabricated using a prepreg compression molding technique. The effects of the fused SiO2 and h-BN contents on the thermal, mechanical, and ablative properties of the ceramizable composite were systematically investigated. The ceramizable composite with an optimized amount of fused SiO2 and h-BN exhibited superb thermal stability, with a peak degradation temperature and residue yield at 1400 °C of 533.2 °C and 71.5%, respectively. Moreover, the modified ceramizable composite exhibited excellent load-bearing capacity with a flexural strength of 402.2 MPa and superior ablation resistance with a linear ablation rate of 0.0147 mm/s at a heat flux of 4.2 MW/m2, which was significantly better than the pristine quartz fiber/benzoxazine resin composite. In addition, possible ablation mechanisms were revealed based on the microstructure analysis, phase transformation, chemical bonding states, and the degree of graphitization of the ceramized products. The readily oxidized pyrolytic carbon (PyC) and the SiO2 with a relatively low melting point were converted in situ into refractory carbide. Thus, a robust thermal protective barrier with SiC as the skeleton and borosilicate glass as the matrix protected the composite from severe thermochemical erosion and thermomechanical denudation.