Dissemin is shutting down on January 1st, 2025

Published in

American Diabetes Association, Diabetes, 2023

DOI: 10.2337/db23-0009

Links

Tools

Export citation

Search in Google Scholar

Exocrine pancreas in type 1 and type 2 diabetes: different patterns of fibrosis, metaplasia, angiopathy, and adiposity

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The endocrine and exocrine compartments of the pancreas are spatially related but functionally distinct. Multiple diseases affect both compartments, including type 1 diabetes (T1D), pancreatitis, cystic fibrosis, and pancreatic cancer. To better understand how the exocrine pancreas changes with age, obesity, and diabetes, we performed systematic analysis of wellpreserved tissue sections from the pancreatic head, body, and tail of organ donors with T1D (n = 20), type 2 diabetes (T2D, n = 25), and donors with no diabetes (ND, n = 74). Among ND donors, we found that acinar-to-ductal metaplasia (ADM), angiopathy, and pancreatic adiposity increased with age, while ADM and adiposity also increased with BMI. Compared to age- and sex-matched ND organs, T1D pancreata had greater acinar atrophy and angiopathy with fewer intralobular adipocytes. T2D pancreata had greater ADM, angiopathy, and total T lymphocytes, but no difference in adipocyte number, compared to ND organs. While total pancreatic fibrosis was increased in both T1D and T2D, the pattern was different with T1D pancreata having greater periductal and perivascular fibrosis, whereas T2D pancreata had greater lobular and parenchymal fibrosis. Thus, the exocrine pancreas undergoes distinct changes as individuals age or develop T1D or T2D.