Dissemin is shutting down on January 1st, 2025

Published in

CSIRO Publishing, Functional Plant Biology, 1(51), 2023

DOI: 10.1071/fp23184

Links

Tools

Export citation

Search in Google Scholar

Boosting underwater germination in Echinochloa colona seeds: the impact of high amplitude alternating temperatures and potassium nitrate osmopriming

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Underwater germination could risk seedling survival, suggesting the need for control through seed perception of environmental cues. These cues include diurnally alternating temperatures tied to drained soils or shallow water tables. We examined high-amplitude alternating temperatures impact on underwater germination. Besides, the conditions experimented by seeds in the soil (e.g. hydration/dehydration phases) change their germinability so we tested if osmopriming could affect underwater germination. We worked with Echinochloa colona seedlots from extensive crop fields, exposing seeds to sequential submergence and drained treatments in combination with cues that promote germination. While a 10°C difference between maximum and minimum daily temperatures maximised germination in drained conditions, higher amplitudes (>15°C) alternating temperatures promoted E. colona underwater germination under hypoxic water (pO2 < 4.1 kPa). KNO3 osmopriming in drained conditions promoted later underwater germination even under hypoxic water; however, PEG 6000 osmopriming induced seeds to enter secondary dormancy inhibiting underwater germination. KNO3 improved E. colona underwater germination under air-equilibrated floodwater (pO2: 16.5–17.4 kPa) yet not under hypoxic conditions. This suggests that germination can proceed in flooded nitrate-fertile soils as long as it remains aerobic. Hypoxic submergence did not inhibit the induction of hypersensitivity to light in E. colona seeds. This research expands our understanding of wetland seed germination ecophysiology, shedding light on the inducible nature of underwater germination in hydrophyte weeds.