Published in

American Astronomical Society, Astrophysical Journal, 1(933), p. 116, 2022

DOI: 10.3847/1538-4357/ac6184

Links

Tools

Export citation

Search in Google Scholar

A Comparative Study of Machine-learning Methods for X-Ray Binary Classification

Journal article published in 2022 by Zoe L. de Beurs ORCID, N. Islam ORCID, G. Gopalan ORCID, S. D. Vrtilek ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract X-ray binaries (XRBs) consist of a compact object that accretes material from an orbiting secondary star. The most secure method we have for determining if the compact object is a black hole is to determine its mass: This is limited to bright objects and requires substantial time-intensive spectroscopic monitoring. With new X-ray sources being discovered with different X-ray observatories, developing efficient, robust means to classify compact objects becomes increasingly important. We compare three machine-learning classification methods (Bayesian Gaussian Processes (BGPs), K-Nearest Neighbors (KNN), Support Vector Machines) for determining whether the compact objects are neutron stars or black holes (BHs) in XRB systems. Each machine-learning method uses spatial patterns that exist between systems of the same type in 3D color–color–intensity diagrams. We used lightcurves extracted using 6 yr of data with MAXI/GSC for 44 representative sources. We find that all three methods are highly accurate in distinguishing pulsing from nonpulsing neutron stars (NPNS) with 95% of NPNS and 100% of pulsars accurately predicted. All three methods have high accuracy in distinguishing BHs from pulsars (92%) but continue to confuse BHs with a subclass of NPNS, called bursters, with KNN doing the best at only 50% accuracy for predicting BHs. The precision of all three methods is high, providing equivalent results over 5–10 independent runs. In future work, we will suggest a fourth dimension be incorporated to mitigate the confusion of BHs with bursters. This work paves the way toward more robust methods to efficiently distinguish BHs, NPNS, and pulsars.