Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 35(119), 2022

DOI: 10.1073/pnas.2121338119

Links

Tools

Export citation

Search in Google Scholar

Optimizing the human learnability of abstract network representations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Precisely how humans process relational patterns of information in knowledge, language, music, and society is not well understood. Prior work in the field of statistical learning has demonstrated that humans process such information by building internal models of the underlying network structure. However, these mental maps are often inaccurate due to limitations in human information processing. The existence of such limitations raises clear questions: Given a target network that one wishes for a human to learn, what network should one present to the human? Should one simply present the target network as-is, or should one emphasize certain parts of the network to proactively mitigate expected errors in learning? To investigate these questions, we study the optimization of network learnability in a computational model of human learning. Evaluating an array of synthetic and real-world networks, we find that learnability is enhanced by reinforcing connections within modules or clusters. In contrast, when networks contain significant core–periphery structure, we find that learnability is best optimized by reinforcing peripheral edges between low-degree nodes. Overall, our findings suggest that the accuracy of human network learning can be systematically enhanced by targeted emphasis and de-emphasis of prescribed sectors of information.