Published in

American Institute of Physics, Applied Physics Letters, 14(121), 2022

DOI: 10.1063/5.0102092

Links

Tools

Export citation

Search in Google Scholar

Effects of laser-annealing on fixed-frequency superconducting qubits

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

As superconducting quantum processors increase in complexity, techniques to overcome constraints on frequency crowding are needed. The recently developed method of laser-annealing provides an effective post-fabrication method to adjust the frequency of superconducting qubits. Here, we present an automated laser-annealing apparatus based on conventional microscopy components and demonstrate preservation of highly coherent transmons. In addition, we perform noise spectroscopy to investigate the change in defect features, in particular, two-level system defects, after laser-annealing. Finally, we present a local heating model as well as demonstrate aging stability for laser-annealing on the wafer scale. Our work constitutes an important step toward both understanding the underlying physical mechanism and scaling up laser-annealing of superconducting qubits.