Published in

Nature Research, Nature Communications, 1(14), 2023

DOI: 10.1038/s41467-023-38257-3

Links

Tools

Export citation

Search in Google Scholar

Anomalous enhancement of charge density wave in kagome superconductor CsV3Sb5 approaching the 2D limit

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe recently discovered kagome metals AV3Sb5 (A = Cs, Rb, K) exhibit a variety of intriguing phenomena, such as a charge density wave (CDW) with time-reversal symmetry breaking and possible unconventional superconductivity. Here, we report a rare non-monotonic evolution of the CDW temperature (TCDW) with the reduction of flake thickness approaching the atomic limit, and the superconducting transition temperature (Tc) features an inverse variation with TCDW. TCDW initially decreases to a minimum value of 72 K at 27 layers and then increases abruptly, reaching a record-high value of 120 K at 5 layers. Raman scattering measurements reveal a weakened electron-phonon coupling with the reduction of sample thickness, suggesting that a crossover from electron-phonon coupling to dominantly electronic interactions could account for the non-monotonic thickness dependence of TCDW. Our work demonstrates the novel effects of dimension reduction and carrier doping on quantum states in thin flakes and provides crucial insights into the complex mechanism of the CDW order in the family of AV3Sb5 kagome metals.