Published in

MDPI, Brain Sciences, 7(12), p. 825, 2022

DOI: 10.3390/brainsci12070825

Links

Tools

Export citation

Search in Google Scholar

Gene Expression Changes of Murine Cortex Homeostasis in Response to Sleep Deprivation Hint Dysregulated Aging-like Transcriptional Responses

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Sleep deprivation leads to the deterioration in the physiological functioning of the brain, cognitive decline, and many neurodegenerative diseases, all of which progress with advancing age. Sleep insufficiency and impairments in cognitive function are characterized by progressive neuronal losses in the cerebral cortex. In this study, we analyze gene expression profiles following sleep-deprived murine models and circadian matched controls to identify genes that might underlie cortical homeostasis in response to sleep deprivation. Screening of the literature resulted in three murine (Mus musculus) gene expression datasets (GSE6514, GSE78215, and GSE33491) that included cortical tissue biopsies from mice that are sleep deprived for 6 h (n = 15) and from circadian controls that are left undisturbed (n = 15). Cortical differentially expressed genes are used to construct a network of encoded proteins that are ranked based on their interactome according to 11 topological algorithms. The analysis revealed three genes—NFKBIA, EZR, and SGK1—which exhibited the highest multi-algorithmic topological significance. These genes are strong markers of increased brain inflammation, cytoskeletal aberrations, and glucocorticoid resistance, changes that imply aging-like transcriptional responses during sleep deprivation in the murine cortex. Their potential role as candidate markers of local homeostatic response to sleep loss in the murine cortex warrants further experimental validation.