Published in

Wiley, Angewandte Chemie, 4(135), 2022

DOI: 10.1002/ange.202214394

Wiley, Angewandte Chemie International Edition, 4(62), 2022

DOI: 10.1002/anie.202214394

Links

Tools

Export citation

Search in Google Scholar

Peptide Amphiphile Mediated Co‐assembly for Nanoplasmonic Sensing

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAromatic interactions are commonly involved in the assembly of naturally occurring building blocks, and these interactions can be replicated in an artificial setting to produce functional materials. Here we describe a colorimetric biosensor using co‐assembly experiments with plasmonic gold and surfactant‐like peptides (SLPs) spanning a wide range of aromatic residues, polar stretches, and interfacial affinities. The SLPs programmed in DDD−(ZZ)x−FFPC self‐assemble into higher‐order structures in response to a protease and subsequently modulate the colloidal dispersity of gold leading to a colorimetric readout. Results show the strong aggregation propensity of the FFPC tail without polar DDD head. The SLPs were specific to the target protease, i.e., Mpro, a biomarker for SARS‐CoV‐2. This system is a simple and visual tool that senses Mproin phosphate buffer, exhaled breath condensate, and saliva with detection limits of 15.7, 20.8, and 26.1 nM, respectively. These results may have value in designing other protease testing methods.