Published in

American Association for the Advancement of Science, Science Advances, 9(8), 2022

DOI: 10.1126/sciadv.abk1238

Links

Tools

Export citation

Search in Google Scholar

Auts2 deletion involves in DG hypoplasia and social recognition deficit: The developmental and neural circuit mechanisms

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The involvement of genetic risk and the underlying developmental and neural circuit mechanisms in autism-related social deficit are largely unclear. Here, we report that deletion of AUTS2 , a high-susceptibility gene of ASDs, caused postnatal dentate gyrus (DG) hypoplasia, which was closely relevant to social recognition deficit. Furthermore, a previously unknown mechanism for neural cell migration in postnatal DG development was identified, in which Auts2-related signaling played a vital role as the transcription repressor. Moreover, the supramammillary nucleus (SuM)–DG-CA3 neural circuit was found to be involved in social recognition and affected in Auts2 -deleted mice due to DG hypoplasia. Correction of DG-CA3 synaptic transmission by using a pharmacological approach or chemo/optogenetic activation of the SuM-DG circuit restored the social recognition deficit in Auts2 -deleted mice. Our findings demonstrated the vital role of Auts2 in postnatal DG development, and this role was critical for SuM-DG-CA3 neural circuit-mediated social recognition behavior.