Published in

American Institute of Physics, APL Materials, 4(9), 2021

DOI: 10.1063/5.0045820

Links

Tools

Export citation

Search in Google Scholar

Emerging opportunities for voltage-driven magneto-ionic control in ferroic heterostructures

Journal article published in 2021 by Youdi Gu, Cheng Song ORCID, Qian Wang, Weijin Hu ORCID, Wei Liu ORCID, Feng Pan ORCID, Zhidong Zhang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Voltage control of magnetism has been considered and proven to be an efficient actuation protocol to boost energy efficiency in a widespread range of spintronic devices. In particular, the study of voltage-induced changes in magnetism by the magneto-ionic effect has rapidly accelerated during the past few years due to the versatile advantages of effective control, non-volatile nature, low-power cost, etc. In this perspective, we briefly outline the recent research progress on the voltage-controlled magneto-ionic effect by using two representative dielectric gating materials [ionic liquids (ILs) and ionic conductors] in different functional solid-state heterostructures and devices, mainly including both the ferroic-order [ferromagnetic, ferroelectric (FE), and multiferroic] oxides and magnetic metal-based heterostructure systems. Within the framework of ferroic oxide heterostructures, we have also extended the IL control to FE materials, clarifying that FE properties can also be tailored by electrostatic and electrochemical methods. Finally, we discuss the challenges and future aspects of magneto-ionics, which would inspire more in-depth studies and promote the practical applications.