Dissemin is shutting down on January 1st, 2025

Published in

De Gruyter, Advanced Optical Technologies, 6(10), p. 375-391, 2021

DOI: 10.1515/aot-2021-0042

Links

Tools

Export citation

Search in Google Scholar

Probing biomechanical properties of the cornea with air-puff-based techniques – an overview

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractThe cornea is a part of the anterior segment of the eye that plays an essential optical role in refracting the light rays on the retina. Cornea also preserves the shape of an eyeball and constitutes a mechanical barrier, protecting the eye against the factors of the external environment. The structure of the cornea influences its biomechanical properties and ensures appropriate mechanical load transfer (that depends on the external environment and the intraocular pressure) while maintaining its shape (to a certain extent) and its transparency. The assessment of the corneal biomechanics is important in clinical ophthalmology, e.g. in the diagnosis of ectatic corneal diseases, for precise planning of the refractive surgery, and in accurate determination of the intraocular pressure. A standard technique to determine corneal biomechanics requires the application of well-defined mechanical stimulus (e.g. air puff) and performing simultaneous imaging of the response of the tissue to the stimulus. A number of methods to assess the biomechanical properties of the cornea have been developed, including ultrasound, magnetic resonance imaging, and optical methods as visualization modalities. Commercially available methods include the ocular response analyzer (ORA) and corneal visualization scheimpflug technology (Corvis ST). Currently advanced research is conducted using optical coherence tomography (OCT). The extension of OCT called optical coherence elastography (OCE) possesses high clinical potential due to the imaging speed, noncontact character, and high resolution of images.