Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Land Degradation and Development, 5(34), p. 1504-1521, 2022

DOI: 10.1002/ldr.4549

Links

Tools

Export citation

Search in Google Scholar

Microbial communities and biogeochemical functioning across peatlands in the Athabasca Oil Sands region of Canada: Implications for reclamation and management

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPeatlands play an important role in global biogeochemical cycles and are essential for multiple ecosystem functions. Understanding the environmental drivers of microbial functioning and community structure can provide insights to enable effective and evidence‐based management. However, it remains largely unknown how microbial diversity contributes to the functioning of belowground processes. Addressing this gap in knowledge will provide a better understanding of microbial‐mediated processes in peatlands that are undergoing restoration or reclamation. This study assessed the changes in microbial community diversity and structure as well as soil function by measuring microbial respiration on a range of substrates from three natural fen types found in the Athabasca Oil Sands region of Alberta, Canada (a poor fen, a hypersaline fen, and a tree‐rich fen) and a nearby constructed fen undergoing reclamation following open pit mining. Overall, substrate induced respiration was significantly higher in the constructed fen. Alpha diversity of fungi and prokaryotes was highest in the tree‐rich fen, and the composition of microbial communities was significantly different between fens. Both fungal and prokaryotic communities were strongly related to pore water pH and temperature, with plant richness also contributing to the shape of fungal communities. In summary, microbial community structure reflects the underlying differences in soil condition across different fens but plays essential roles in the ecological functions of soil. These findings provide a new outlook for the management of peatlands undergoing post‐mining reclamation. Future research on peatland reclamation should consider the dynamic interaction between communities and ecosystem functionality, for which this study forms a useful baseline.