Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 4(522), p. 5204-5216, 2023

DOI: 10.1093/mnras/stad1372

Links

Tools

Export citation

Search in Google Scholar

Deciphering the unusual stellar progenitor of GRB 210704A

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT GRB 210704A is a burst of intermediate duration (T90 ∼ 1–4 s) followed by a fading afterglow and an optical excess that peaked about 7 d after the explosion. Its properties, and in particular those of the excess, do not easily fit into the well-established classification scheme of gamma-ray bursts (GRBs) as being long or short, leaving the nature of its progenitor uncertain. We present multiwavelength observations of the GRB and its counterpart, observed up to 160 d after the burst. In order to decipher the nature of the progenitor system, we present a detailed analysis of the GRB high-energy properties (duration, spectral lag, and Amati correlation), its environment, and late-time optical excess. We discuss three possible scenarios: a neutron star merger, a collapsing massive star, and an atypical explosion possibly hosted in a cluster of galaxies. We find that traditional kilonova and supernova models do not match well the properties of the optical excess, leaving us with the intriguing suggestion that this event was an exotic high-energy merger.