Published in

Wiley, Angewandte Chemie International Edition, 42(61), 2022

DOI: 10.1002/anie.202209168

Wiley, Angewandte Chemie, 42(134), 2022

DOI: 10.1002/ange.202209168

Links

Tools

Export citation

Search in Google Scholar

Formation of Organic Acids and Carbonyl Compounds in n‐Butane Oxidation via γ‐Ketohydroperoxide Decomposition

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractA crucial chain‐branching step in autoignition is the decomposition of ketohydroperoxides (KHP) to form an oxy radical and OH. Other pathways compete with chain‐branching, such as “Korcek” dissociation of γ‐KHP to a carbonyl and an acid. Here we characterize the formation of a γ‐KHP and its decomposition to formic acid+acetone products from observations of n‐butane oxidation in two complementary experiments. In jet‐stirred reactor measurements, KHP is observed above 590 K. The KHP concentration decreases with increasing temperature, whereas formic acid and acetone products increase. Observation of characteristic isotopologs acetone‐d3 and formic acid‐d0 in the oxidation of CH3CD2CD2CH3 is consistent with a Korcek mechanism. In laser‐initiated oxidation experiments of n‐butane, formic acid and acetone are produced on the timescale of KHP removal. Modelling the time‐resolved production of formic acid provides an estimated upper limit of 2 s−1 for the rate coefficient of KHP decomposition to formic acid+acetone.