Published in

ISMRM Annual Meeting, 2023

DOI: 10.58530/2022/1182

Links

Tools

Export citation

Search in Google Scholar

129Xe chemical shift mapping in the lungs with 3D density-weighted MRSI

Proceedings article published in 2023 by Graham Norquay, Guilhem Collier, Rolf Schulte, Jim Wild ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

3D density-weighted MRSI was used to regionally measure the 129Xe chemical shift from xenon in the lung airspaces (G), lung tissue/plasma (TP) and pulmonary red blood cells (RBC) at three lung inflation states. The 129Xe-RBC and 129Xe-G chemical shifts were both found to increase with increasing lung inflation (increase in alveolar pO2) while the 129Xe-TP shift was observed to be lung-inflation independent. The RBC chemical shift maps presented here may be used in patient populations to detect areas of low blood oxygenation in diseases presenting regional hypoxia in the lungs and other well-perfused organs such as the brain and kidneys.