Published in

Oxford University Press, Journal of Plankton Research, 1(45), p. 163-179, 2022

DOI: 10.1093/plankt/fbac050

Links

Tools

Export citation

Search in Google Scholar

Global long-term observations reveal wide geographic divergence in coastal phytoplankton species niches

Journal article published in 2022 by Lorenzo Longobardi ORCID, Laurent Dubroca, Diana Sarno, Adriana Zingone ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAs a fundamental component for marine ecosystem functioning, phytoplankton require an appraisal of the extent of their adaptive potential to interpret the effects of natural or human-induced changes in marine habitats. To this aim, the study of the present ecological characteristics of phytoplankton species represents the first effort to assess their adaptive potential in a wide spectrum of environmental variables. Using a set of nine time series, this study aimed at describing the ecological niche of 10 worldwide-distributed species and testing whether individual species occupy the same niche across different environments. The species showed wide variations in frequency, average abundance and seasonal pattern among sites, while their annual maxima occurred over ample ranges of physical–chemical variables, with marked differences from site to site depicting a considerably wide global niche for each species. Although in some of the species this result can be attributed to the existence of multiple, morphologically similar taxa hardly identifiable in light microscopy, other cases could be explained by intraspecific diversity and/or enhanced adaptation potential in phytoplankton populations. Although probably not applicable to species with more restricted distribution ranges, these results should be considered when projecting present species distributions into a future scenario of climate change.