Published in

Wiley, Advanced Materials, 41(33), 2021

DOI: 10.1002/adma.202102488

Links

Tools

Export citation

Search in Google Scholar

Stretchable and Highly Permeable Nanofibrous Sensors for Detecting Complex Human Body Motion

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWearable strain sensors have been attracting special attention in the detection of human posture and activity, as well as for the assessment of physical rehabilitation and kinematics. However, it is a challenge to fabricate stretchable and comfortable‐to‐wear permeable strain sensors that can provide highly accurate and continuous motion recording while exerting minimal constraints and maintaining low interference with the body. Herein, covalently grafting nanofibrous polyaniline (PANI) onto stretchable elastomer nanomeshes is reported to obtain a freestanding ultrathin (varying from 300 to 10 000 nm) strain sensor that has high gas permeability (10–33 mg h–1). The sensor demonstrates a low weight and can be directly laminated onto the dynamic human skin for long periods of time. The sensor, which produces an intimate connection with solid or living objects, has a stable performance with excellent sustainability, linearity, durability, and low hysteresis. It exibits excellent performance for continuous interrogation of complex movements, mimicking muscle activities, and resembling brain activity. This includes a very precise discrimination of bending and twisting stimuli at different angles (1–180°) and speeds (3–18 rpm) and very low exertion of counter‐interference. These results imply the utility of this appraoch for advanced developments of robotic e‐skins or e‐muscles.