Published in

05.01 - Airway pharmacology and treatment, 2022

DOI: 10.1183/13993003.congress-2022.2525

European Respiratory Society, ERJ Open Research, 1(10), p. 00566-2023, 2023

DOI: 10.1183/23120541.00566-2023

Links

Tools

Export citation

Search in Google Scholar

Asthma exacerbations and eosinophilia in the UK Biobank: a genome-wide association study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

BackgroundAsthma exacerbations reflect disease severity, affect morbidity and mortality, and may lead to declining lung function. Inflammatory endotypes (e.g.T2-high (eosinophilic)) may play a key role in asthma exacerbations. We aimed to assess whether genetic susceptibility underlies asthma exacerbation risk and additionally tested for an interaction between genetic variants and eosinophilia on exacerbation risk.MethodsUK Biobank data were used to perform a genome-wide association study of individuals with asthma and at least one exacerbation compared to individuals with asthma and no history of exacerbations. Individuals with asthma were identified using self-reported data, hospitalisation data and general practitioner records. Exacerbations were identified as either asthma-related hospitalisation, general practitioner record of asthma exacerbation or an oral corticosteroid burst prescription. A logistic regression model adjusted for age, sex, smoking status and genetic ancestryviaprincipal components was used to assess the association between genetic variants and asthma exacerbations. We sought replication for suggestive associations (p<5×10−6) in the GERA cohort.ResultsIn the UK Biobank, we identified 11 604 cases and 37 890 controls. While no variants reached genome-wide significance (p<5×10−8) in the primary analysis, 116 signals were suggestively significant (p<5×10−6). In GERA, two single nucleotide polymorphisms (rs34643691 and rs149721630) replicated (p<0.05), representing signals near the NTRK3 and ABCA13 genes.ConclusionsOur study has identified reproducible associations with asthma exacerbations in the UK Biobank and GERA cohorts. Confirmation of these findings in different asthma subphenotypes in diverse ancestries and functional investigation will be required to understand their mechanisms of action and potentially inform therapeutic development.