Published in

Oxford University Press, Neuro-Oncology, Supplement_6(23), p. vi202-vi203, 2021

DOI: 10.1093/neuonc/noab196.806

Links

Tools

Export citation

Search in Google Scholar

Tami-22. Segmentation of Distinct Tumor Hallmarks of Glioblastoma on Digital Histopathology Using a Hierarchical Deep Learning Approach

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract PURPOSE Glioblastoma is a highly heterogeneous brain tumor. Primary treatment for glioblastoma involves maximally-safe surgical resection. After surgery, resected tissue slides are visually analyzed by neuro-pathologists to identify distinct histological hallmarks characterizing glioblastoma including high cellularity, necrosis, and vascular proliferation. In this work, we present a hierarchical deep learning-based strategy to automatically segment distinct Glioblastoma niches including necrosis, cellular tumor, and hyperplastic blood vessels, on digitized histopathology slides. METHODS We employed the IvyGap cohort for which Hematoxylin and eosin (H&E) slides (digitized at 20X magnification) from n=41 glioblastoma patients were available. Additionally, expert-driven segmentations of cellular tumor, necrosis, and hyperplastic blood vessels (along with other histological attributes) were made available. We randomly employed n=120 slides from 29 patients for training, n=38 slides from 6 cases for validation, and n=30 slides from 6 patients to feed our deep learning model based on Residual Network architecture (ResNet-50). ~2,000 patches of 224x224 pixels were sampled for every slide. Our hierarchical model included first segmenting necrosis from non-necrotic (i.e. cellular tumor) regions, and then from the regions segmented as non-necrotic, identifying hyperplastic blood-vessels from the rest of the cellular tumor. RESULTS Our model achieved a training accuracy of 94%, and a testing accuracy of 88% with an area under the curve (AUC) of 92% in distinguishing necrosis from non-necrotic (i.e. cellular tumor) regions. Similarly, we obtained a training accuracy of 78%, and a testing accuracy of 87% (with an AUC of 94%) in identifying hyperplastic blood vessels from the rest of the cellular tumor. CONCLUSION We developed a reliable hierarchical segmentation model for automatic segmentation of necrotic, cellular tumor, and hyperplastic blood vessels on digitized H&E-stained Glioblastoma tissue images. Future work will involve extension of our model for segmentation of pseudopalisading patterns and microvascular proliferation.