Published in

Oxford University Press, Cerebral Cortex, 10(33), p. 6366-6381, 2022

DOI: 10.1093/cercor/bhac510

Links

Tools

Export citation

Search in Google Scholar

Dynamic causal modeling of cerebello-cerebral connectivity when sequencing trait-implying actions

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Prior studies suggest that the cerebellum contributes to the prediction of action sequences as well as the detection of social violations. In this dynamic causal modeling study, we explored the effective connectivity of the cerebellum with the cerebrum in processing social action sequences. A first model aimed to explore functional cerebello-cerebral connectivity when learning trait/stereotype-implying action sequences. We found many significant bidirectional connectivities between mentalizing areas of the cerebellum and the cerebrum including the temporo-parietal junction (TPJ) and medial prefrontal cortex (mPFC). Within the cerebrum, we found significant connectivity between the right TPJ and the mPFC, and between the TPJ bilaterally. A second model aimed to investigate cerebello-cerebral connectivity when conflicting information arises. We found many significant closed loops between the cerebellum and cerebral mentalizing (e.g. dorsal mPFC) and executive control areas (e.g. medial and lateral prefrontal cortices). Additional closed loops were found within the cerebral mentalizing and executive networks. The current results confirm prior research on effective connectivity linking the cerebellum with mentalizing areas in the cerebrum for predicting social sequences, and extend it to cerebral executive areas for social violations. Overall, this study emphasizes the critical role of cerebello-cerebral connectivity in understanding social sequences.