Published in

MDPI, Molecules, 13(26), p. 3831, 2021

DOI: 10.3390/molecules26133831

Links

Tools

Export citation

Search in Google Scholar

Novel Facet of an Old Dietary Molecule? Direct Influence of Caffeine on Glucose and Biogenic Amine Handling by Human Adipocytes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Caffeine is a plant alkaloid present in food and beverages consumed worldwide. It has high lipid solubility with recognized actions in the central nervous system and in peripheral tissues, notably the adipose depots. However, the literature is scant regarding caffeine’s influence on adipocyte functions other than lipolysis, such as glucose incorporation into lipids (lipogenesis) and amine oxidation. The objective of this study was to explore the direct effects of caffeine and of isobutylmethylxanthine (IBMX) on these adipocyte functions. Glucose transport into fat cells freshly isolated from mice, rats, or humans was monitored by determining [3H]-2-deoxyglucose (2-DG) uptake, while the incorporation of radiolabeled glucose into cell lipids was used as an index of lipogenic activity. Oxidation of benzylamine by primary amine oxidase (PrAO) was inhibited by increasing doses of caffeine in human adipose tissue preparations with an inhibition constant (Ki) in the millimolar range. Caffeine inhibited basal and insulin-stimulated glucose transport as well as lipogenesis in rodent adipose cells. The antilipogenic action of caffeine was also observed in adipocytes from mice genetically invalidated for PrAO activity, indicating that PrAO activity was not required for lipogenesis inhibition. These caffeine inhibitory properties were extended to human adipocytes: relative to basal 2-DG uptake, set at 1.0 ± 0.2 for 6 individuals, 0.1 mM caffeine tended to reduce uptake to 0.83 ± 0.08. Insulin increased uptake by 3.86 ± 1.11 fold when tested alone at 100 nM, and by 3.21 ± 0.80 when combined with caffeine. Our results reinforce the recommendation of caffeine’s potential in the treatment or prevention of obesity complications.