Published in

Cancer Research Communications, 10(3), p. 2158-2169, 2023

DOI: 10.1158/2767-9764.crc-23-0027

Links

Tools

Export citation

Search in Google Scholar

Ewing Sarcoma Single-cell Transcriptome Analysis Reveals Functionally Impaired Antigen-presenting Cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Novel therapeutic strategies are urgently needed for patients with high-risk Ewing sarcoma and for the reduction of severe side effects for all patients. Immunotherapy may fill this need, but its successful application has been hampered by a lack of knowledge on the composition and function of the Ewing sarcoma immune microenvironment. Here, we explore the immune microenvironment of Ewing sarcoma, by single-cell RNA sequencing of 18 Ewing sarcoma primary tissue samples. Ewing sarcoma is infiltrated by natural killer, T, and B cells, dendritic cells, and immunosuppressive macrophages. Ewing sarcoma–associated T cells show various degrees of dysfunction. The antigen-presenting cells found in Ewing sarcoma lack costimulatory gene expression, implying functional impairment. Interaction analysis reveals a clear role for Ewing sarcoma tumor cells in turning the Ewing sarcoma immune microenvironment into an immunosuppressive niche. These results provide novel insights into the functional state of immune cells in the Ewing sarcoma tumor microenvironment and suggest mechanisms by which Ewing sarcoma tumor cells interact with, and shape, the immune microenvironment. Significance: This study is the first presenting a detailed analysis of the Ewing sarcoma microenvironment using single-cell RNA sequencing. We provide novel insight into the functional state of immune cells and suggests mechanisms by which Ewing tumor cells interact with, and shape, their immune microenvironment. These insights provide help in understanding the failures and successes of immunotherapy in Ewing sarcoma and may guide novel targeted (immuno) therapeutic approaches.