Published in

American Astronomical Society, Astrophysical Journal, 2(944), p. 128, 2023

DOI: 10.3847/1538-4357/aca535

Links

Tools

Export citation

Search in Google Scholar

Wide-band Timing of the Parkes Pulsar Timing Array UWL Data

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract In 2018 an ultra–wide-bandwidth low-frequency (UWL) receiver was installed on the 64 m Parkes Radio Telescope, enabling observations with an instantaneous frequency coverage from 704 to 4032 MHz. Here we present the analysis of a 3 yr data set of 35 ms pulsars observed with the UWL by the Parkes Pulsar Timing Array, using wide-band timing methods. The two key differences compared to typical narrowband methods are (1) generation of two-dimensional templates accounting for pulse shape evolution with frequency and (2) simultaneous measurements of the pulse time of arrival (TOA) and dispersion measure (DM). This is the first time that wide-band timing has been applied to a uniform data set collected with a single large fractional bandwidth receiver, for which such techniques were originally developed. As a result of our study, we present a set of profile evolution models and new timing solutions, including initial noise analysis. Precision of our TOA and DM measurements is in the range of 0.005–2.08 μs and (0.043–14.24) × 10−4 cm−3 pc, respectively, with 94% of the pulsars achieving a median TOA uncertainty of less than 1 μs.