Published in

Wiley, Letters in Applied Microbiology, 12(76), 2023

DOI: 10.1093/lambio/ovad136

Links

Tools

Export citation

Search in Google Scholar

Comparison of kits for SARS-CoV-2 extraction in liquid and passive samples

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Effective extraction and detection of viral nucleic acids from sewage are fundamental components of a successful SARS-CoV-2 sewage surveillance programme. As there is no standard method employed in sewage surveillance, understanding the performance of different extraction kits in the recovery of SARS-CoV-2 and the impact that PCR inhibitors have on quantification is essential to minimize data discrepancies caused by sample extraction. Three commercial nucleic acid extraction kits: the RNeasy PowerSoil Total RNA Kit (PS), the RNeasy PowerMicrobiome Kit (PMB), and the MagMAX™ Microbiome Ultra Nucleic Acid Isolation Kit (MM), with minor modifications, were evaluated. Their efficacy in recovering viral ribonucleic acid and removal of PCR inhibitors was assessed using two South Australian wastewater matrices—one from a major metropolitan site and one from a regional centre. Both had SARS-CoV-2 present due to active COVID-19 cases in these communities. Overall, the MM kit had a higher recovery of SARS-CoV-2 from the samples tested, followed by PMB and PS. The PMB kit performance was strongly influenced by the sample matrix when compared to the MM kit. It is recommended to assess the performance of extraction kits using different local wastewater matrices to ensure the accuracy and reliability of monitoring results to avoid false reporting.