Published in

Cambridge University Press, Radiocarbon, p. 1-16, 2023

DOI: 10.1017/rdc.2023.73

Links

Tools

Export citation

Search in Google Scholar

Time Series of Surface Water Dissolved Inorganic Carbon Isotopes From the Southern California Bight

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Dissolved inorganic carbon (DIC) in ocean water is a major sink of fossil fuel derived CO2. Carbon isotopes in DIC serve as tracers for oceanic water masses, biogeochemical processes, and air-sea gas exchange. We present a timeseries of surface DIC δ13C and Δ14C values from 2011 to 2022 from Newport Beach, California. This is a continuation of previous timeseries (Hinger et al. 2010; Santos et al. 2011) that together provide an 18-year record. These data show that DIC Δ14C values have declined by 42‰ and that DIC δ13C values have declined by 0.4‰ since 2004. By 2020, DIC Δ14C values were within analytical error of nearby clean atmospheric CO2 Δ14C values. These long-term trends are likely the result of significant fossil fuel derived CO2 in surface DIC from air-sea gas exchange. Seasonally, Δ14C values varied by 3.4‰ between 2011 and 2022, where seasonal δ13C values varied by 0.7‰. The seasonal variation in Δ14C values is likely driven by variations in upwelling, surface eddies, and mixed layer depth. The variation in δ13C values appears to be driven by isotopic fractionation from marine primary producers. The DIC δ13C and Δ14C values record the influence of the drought that began in 2012, and a major upwelling event in 2016.