Published in

American Astronomical Society, Astrophysical Journal, 2(940), p. 144, 2022

DOI: 10.3847/1538-4357/ac9cda

Links

Tools

Export citation

Search in Google Scholar

Rocky Histories: The Effect of High Excitations on the Formation of Rocky Planets

Journal article published in 2022 by Jennifer Scora, Diana Valencia ORCID, Alessandro Morbidelli, Seth Jacobson ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Rocky planets both in and outside of our solar system are observed to have a range of core-mass fractions (CMFs). Imperfect collisions can preferentially strip mantle material from a planet, changing its CMF, and are therefore thought to be the most likely cause of this observed CMF variation. However, previous work that implements these collisions into N-body simulations of planet formation has struggled to reliably form high CMF super-Earths. In this work, we specify our initial conditions and simulation parameters to maximize the prevalence of high-energy, CMF-changing collisions in order to form planets with highly diverse CMFs. High-energy collisions have a large v imp/v esc ratio, so we maximize this ratio by starting simulations with high eccentricity and inclination disks to increase the difference in their orbital velocities, maximizing v imp. Additionally, we minimize v esc by starting with small embryos. The final planets undergo more high-energy, debris-producing collisions, and experience significant CMF change over their formation. However, we find that a number of processes work together to average out the CMF of a planet over time; therefore, we do not consistently form high CMF, high-mass planets. We do form high CMF planets below 0.5 M . Additionally, we find, in these highly eccentric environments, loss of debris mass due to collisional grinding has a significant effect on final planet masses and CMFs, resulting in smaller planets and a higher average planet CMF. This work highlights the importance of improving measurements of high-density planets to better constrain their CMFs.