Published in

Wiley, Advanced Energy Materials, 35(12), 2022

DOI: 10.1002/aenm.202201663

Links

Tools

Export citation

Search in Google Scholar

Excess PbI<sub>2</sub> Management via Multimode Supramolecular Complex Engineering Enables High‐Performance Perovskite Solar Cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractExcess PbI2 in perovskite film is an effective strategy for boosting perovskite solar cells (PSCs) performance. However, the presence of unreacted PbI2 is a critical source of intrinsic instability in perovskite under illumination, due to the photolysis of PbI2 (decomposed into metallic lead and iodine). Herein, this issue is solved by applying ionic liquids (ILs) on PSCs where the ILs can form types of stable supramolecules with residual lead iodide. The formation process and mechanism of the supramolecules are elucidated. The residual PbI2 is also revealed to cause high level lead interstitial defects and induced tensile strain which further deteriorate device performance. The self‐assembled supramolecular complex can passivate the PSCs where significant enhancements are achieved in both power conversion efficiency (PCE, from 21.9% to 23.4%) and device stability (retaining 95% of the initial PCE after 4080 h in ambient dry‐air storage, and 80% after 1400 h continuous light illumination).