Published in

American Association of Neurological Surgeons, Neurosurgical Focus, 1(52), p. E3, 2022

DOI: 10.3171/2021.10.focus21496

Links

Tools

Export citation

Search in Google Scholar

Learning curves in robot-assisted spine surgery: a systematic review and proposal of application to residency curricula

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVE Spine robots have seen increased utilization over the past half decade with the introduction of multiple new systems. Market research expects this expansion to continue over the next half decade at an annual rate of 20%. However, because of the novelty of these devices, there is limited literature on their learning curves and how they should be integrated into residency curricula. With the present review, the authors aimed to address these two points. METHODS A systematic review of the published English-language literature on PubMed, Ovid, Scopus, and Web of Science was conducted to identify studies describing the learning curve in spine robotics. Included articles described clinical results in patients using one of the following endpoints: operative time, screw placement time, fluoroscopy usage, and instrumentation accuracy. Systems examined included the Mazor series, the ExcelsiusGPS, and the TiRobot. Learning curves were reported in a qualitative synthesis, given as the mean improvement in the endpoint per case performed or screw placed where possible. All studies were level IV case series with a high risk of reporting bias. RESULTS Of 1579 unique articles, 97 underwent full-text review and 21 met the inclusion and exclusion criteria; 62 articles were excluded for not presenting primary data for one of the above-described endpoints. Of the 21 articles, 18 noted the presence of a learning curve in spine robots, which ranged from 3 to 30 cases or 15 to 62 screws. Only 12 articles performed regressions of one of the endpoints (most commonly operative time) as a function of screws placed or cases performed. Among these, increasing experience was associated with a 0.24- to 4.6-minute decrease in operative time per case performed. All but one series described the experience of attending surgeons, not residents. CONCLUSIONS Most studies of learning curves with spine robots have found them to be present, with the most common threshold being 20 to 30 cases performed. Unfortunately, all available evidence is level IV data, limited to case series. Given the ability of residency to allow trainees to safely perform these cases under the supervision of experienced senior surgeons, it is argued that a curriculum should be developed for senior-level residents specializing in spine comprising a minimum of 30 performed cases.